Researchers created a new design for computer memory that could improve performance while also lowering the energy demands of internet and communications technologies, which are expected to consume nearly a third of global electricity in the next ten years.
The study was published in the journal, 'Science Advances.'
The University of Cambridge-led team created a device that processes data in the same way that synapses in the human brain do. The devices are made of hafnium oxide, a material that is already used in the semiconductor industry, and tiny self-assembled barriers that can be raised and lowered to allow electrons to pass through.
This method of altering the electrical resistance in computer memory devices and allowing information processing and memory to coexist could lead to the development of computer memory devices with significantly higher density, higher performance, and lower energy consumption. The findings were published in the journal Science Advances.
Our data-hungry world has led to a ballooning of energy demands, making it ever more difficult to reduce carbon emissions. Within the next few years, artificial intelligence, internet usage, algorithms and other data-driven technologies are expected to consume more than 30% of global electricity.
"To a large extent, this explosion in energy demands is due to shortcomings of current computer memory technologies," said first author Dr Markus Hellenbrand, from Cambridge's Department of Materials Science and Metallurgy. "In conventional computing, there's memory on one side and processing on the other, and data is shuffled back between the two, which takes both energy and time."
One potential solution to the problem of inefficient computer memory is a new type of
Read more on tech.hindustantimes.com