The US Vanguard 1 satellite and the rocket stage that delivered it to orbit in 1958 are pieces of cultural heritage. They date from a time when humans first attained the capability of reaching beyond our home planet to the stars. They also have the dubious honour of being the first ‘space junk'. NASA estimates there are around 27,000 human-made objects larger than 10 centimetres that can be classified as space junk – that is, they do not have a useful purpose, either now or in the foreseeable future. These include old satellites, rocket bodies, and fragments of exploded or decaying spacecraft. The smaller bits, down to dust grain-size, number in the millions.
The problem is that collisions between this high-speed trash create more space junk. The worst-case scenario is known as Kessler Syndrome, an unstoppable cascade of collisions which could make parts of Earth orbit unusable.
It's an increasingly pressing situation as private corporations like SpaceX are slated to launch up to 100,000 new satellites by the end of the decade. Anti-satellite missiles, like the one tested by Russia in 2021, can add hundreds to thousands of new debris pieces in one event.
One of the big problems is we don’t know enough about where, what and how much space junk there is. This means we don’t always know when a piece of space junk is about to collide with something, or how far we really are from Kessler Syndrome. This is a problem firstly, of observation and tracking, and secondly, of modelling and simulation of this highly complex data.
Lots of ‘blind spots’ are yet to be covered, like the tiny fragments and dust, and the higher orbits which are difficult to see from Earth’s surface. Adding new instruments and techniques for observing space
Read more on tech.hindustantimes.com