What is it like to be on the surface of Mars or Venus? Or even further afield, such as on Pluto, or Saturn’s moon Titan?
This curiosity has driven advances in space exploration since Sputnik 1 was launched 65 years ago.
But we’re only beginning to scratch the surface of what is knowable about other planetary bodies in the Solar System.
Our new study, published today in Nature Astronomy, shows how some unlikely candidates – namely sand dunes – can provide insight into what weather and conditions you might experience if you were standing on a far-off planetary body.
English poet William Blake famously wondered what it means “to see a world in a grain of sand”.
In our research, we took this quite literally. The idea was to use the mere presence of sand dunes to understand what conditions exist on a world’s surface.
For dunes to even exist, there are a pair of “Goldilocks” criteria that must be satisfied. First is a supply of erodible but durable grains.
There must also be winds fast enough to make those grains hop across the ground – but not fast enough to carry them high into the atmosphere.
So far, the direct measurement of winds and sediment has only been possible on Earth and Mars.
However, we have observed wind-blown sediment features on multiple other bodies (and even comets) by satellite.
The very presence of such dunes on these bodies implies the Goldilocks conditions are met.
Our work focused on Venus, Earth, Mars, Titan, Triton (Neptune’s largest moon) and Pluto. Unresolved debates about these bodies have gone on for decades.
How do we square the apparent wind-blown features on Triton’s and Pluto’s surfaces with their thin, tenuous atmospheres?
Why do we see such prolific sand and dust activity on Mars, despite measuring winds
Read more on tech.hindustantimes.com