Many around the world will watch eagerly this Saturday as NASA launches Artemis I, the agency's first Moon exploration mission since the 1970s.
The spectacle involves the most powerful rocket in the world: the Space Launch System (SLS). Standing at nearly 100 metres tall and weighing more than 2,600 tonnes, the SLS produces a massive 8.8 million pounds of thrust – (more than 31 times the thrust of a Boeing 747 jet).
But it's not just amazing engineering that's behind rocket science and space exploration. Hidden within, there's clever chemistry that powers these fantastic feats and sustains our fragile life in space.
The fuel and the spark
To launch a rocket into space, we need a chemical reaction known as combustion. This is where fuels are combined with oxygen, producing energy as a result. In turn, that energy provides the push (or thrust) needed to propel mammoth machines like the SLS into Earth's upper atmosphere and beyond.
Much like cars on the road and jets in the sky, rockets have engines where combustion takes place. SLS has two engine systems: four core stage RS-25 engines (upgraded space shuttle engines) and two solid rocket boosters. And chemistry is what provides a unique fuel mixture for each engine.
The core stage engines use a mixture of liquid oxygen and liquid hydrogen, whereas the solid rocket boosters, as the name suggests, contain a solid propellant – a hard, rubber-like material called polybutadiene acrylonitrile. In addition to being fuel itself, this material contains fine particles of aluminium metal as fuel, with ammonium perchlorate as the oxygen source.
While fuel for the solid rocket boosters is easily stored at room temperature, the core stage engine fuels need to be stored at -253
Read more on tech.hindustantimes.com