The most extreme objects in the universe are black holes, which are so densely packed into such little space that nothing, not even light, can evade their gravitational attraction once it is sufficiently close to it.
Understanding black holes is the key to unravelling the most fundamental laws governing the cosmos because they represent the limits of two of the best-tested theories of physics: the theory of general relativity, which describes gravity as resulting from the (large-scale) warping of space-time by massive objects, and the theory of quantum mechanics, which describes physics at the smallest length scales.
To fully describe black holes, these two theories need to be stitched together to form a theory of quantum gravity.
To achieve this goal, we might want to look at what manages to escape from black holes, rather than what gets swallowed. The event horizon is an intangible boundary around each black hole, beyond which there is no way of getting out. However, Stephen Hawking famously discovered that every black hole must emit a small amount of thermal radiation due to small quantum fluctuations around its horizon.
Unfortunately, this radiation has never been directly detected. The amount of Hawking radiation coming from each black hole is predicted to be so small, it is impossible to detect (with current technology) among the radiation coming from all other cosmic objects.
Alternatively, could we study the mechanism underlying the emergence of Hawking radiation right here on Earth? This is what researchers from the University of Amsterdam and IFW Dresden set out to investigate. And the answer is an exciting "yes".
"We wanted to use the powerful tools of condensed matter physics to probe the unattainable physics of
Read more on tech.hindustantimes.com