Europa is more than just one of Jupiter's many moons; it's also one of the solar system's most promising locations for searching for extraterrestrial life. There is a liquid water ocean under 10 kilometres of ice that could support life. It is, however, one of the most inhospitable places in the solar system, with surface temperatures of -180 degrees Celsius and extreme levels of radiation. Exploring Europa may be possible in the coming years as a result of Georgia Tech's research into silicon-germanium transistor technology.
Professor John D. Cressler of the Regents' School of Electrical and Computer Engineering (ECE) and his students have been working with silicon-germanium heterojunction bipolar transistors (SiGe HBTs) for decades and have discovered that they have unique advantages in extreme environments such as Europa.
"Due to the way that they're made, these devices actually survive those extreme conditions without any changes made to the underlying technology itself," said Cressler, who is the project investigator. "You can build it for what you want it to do on Earth, and you then can use it in space."
The scientists are in the first year of a three-year NASA Concepts for Ocean Worlds Life Detection Technology (COLDTech) grant to design the electronics infrastructure for future Europa surface missions. NASA intends to launch the Europa Clipper, an orbiting spacecraft that will map Europa's oceans, in 2024, and then send a landing vehicle, the Europa Lander, to drill through the ice and explore its ocean. But it all begins with electronics that can operate in Europa's harsh environment.
In a paper presented at the IEEE Nuclear and Space Radiation Effects Conference in July, Cressler and his students, along with
Read more on tech.hindustantimes.com